使用场景:
批量合并相同格式的Excel、给DataFrame添加行、给DataFrame添加列
一句话说明concat语法:
- 使用某种合并方式(inner/outer)
- 沿着某个轴向(axis=0/1)
- 把多个Pandas对象(DataFrame/Series)合并成一个。
concat语法:pandas.concat(objs, axis=0, join='outer', ignore_index=False)
- objs:一个列表,内容可以是DataFrame或者Series,可以混合
- axis:默认是0代表按行合并,如果等于1代表按列合并
- join:合并的时候索引的对齐方式,默认是outer join,也可以是inner join
- ignore_index:是否忽略掉原来的数据索引
append语法:DataFrame.append(other, ignore_index=False)
append只有按行合并,没有按列合并,相当于concat按行的简写形式
* other:单个dataframe、series、dict,或者列表
* ignore_index:是否忽略掉原来的数据索引
参考文档:
- pandas.concat的api文档:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html
- pandas.concat的教程:https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html
- pandas.append的api文档:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.append.html
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
一、使用pandas.concat合并数据
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3'],
'E': ['E0', 'E1', 'E2', 'E3']
})
df1
|
A |
B |
C |
D |
E |
0 |
A0 |
B0 |
C0 |
D0 |
E0 |
1 |
A1 |
B1 |
C1 |
D1 |
E1 |
2 |
A2 |
B2 |
C2 |
D2 |
E2 |
3 |
A3 |
B3 |
C3 |
D3 |
E3 |
df2 = pd.DataFrame({ 'A': ['A4', 'A5', 'A6', 'A7'],
'B': ['B4', 'B5', 'B6', 'B7'],
'C': ['C4', 'C5', 'C6', 'C7'],
'D': ['D4', 'D5', 'D6', 'D7'],
'F': ['F4', 'F5', 'F6', 'F7']
})
df2
|
A |
B |
C |
D |
F |
0 |
A4 |
B4 |
C4 |
D4 |
F4 |
1 |
A5 |
B5 |
C5 |
D5 |
F5 |
2 |
A6 |
B6 |
C6 |
D6 |
F6 |
3 |
A7 |
B7 |
C7 |
D7 |
F7 |
1、默认的concat,参数为axis=0、join=outer、ignore_index=False
pd.concat([df1,df2])
|
A |
B |
C |
D |
E |
F |
0 |
A0 |
B0 |
C0 |
D0 |
E0 |
NaN |
1 |
A1 |
B1 |
C1 |
D1 |
E1 |
NaN |
2 |
A2 |
B2 |
C2 |
D2 |
E2 |
NaN |
3 |
A3 |
B3 |
C3 |
D3 |
E3 |
NaN |
0 |
A4 |
B4 |
C4 |
D4 |
NaN |
F4 |
1 |
A5 |
B5 |
C5 |
D5 |
NaN |
F5 |
2 |
A6 |
B6 |
C6 |
D6 |
NaN |
F6 |
3 |
A7 |
B7 |
C7 |
D7 |
NaN |
F7 |
2、使用ignore_index=True可以忽略原来的索引
pd.concat([df1,df2], ignore_index=True)
|
A |
B |
C |
D |
E |
F |
0 |
A0 |
B0 |
C0 |
D0 |
E0 |
NaN |
1 |
A1 |
B1 |
C1 |
D1 |
E1 |
NaN |
2 |
A2 |
B2 |
C2 |
D2 |
E2 |
NaN |
3 |
A3 |
B3 |
C3 |
D3 |
E3 |
NaN |
4 |
A4 |
B4 |
C4 |
D4 |
NaN |
F4 |
5 |
A5 |
B5 |
C5 |
D5 |
NaN |
F5 |
6 |
A6 |
B6 |
C6 |
D6 |
NaN |
F6 |
7 |
A7 |
B7 |
C7 |
D7 |
NaN |
F7 |
3、使用join=inner过滤掉不匹配的列
pd.concat([df1,df2], ignore_index=True, join="inner")
|
A |
B |
C |
D |
0 |
A0 |
B0 |
C0 |
D0 |
1 |
A1 |
B1 |
C1 |
D1 |
2 |
A2 |
B2 |
C2 |
D2 |
3 |
A3 |
B3 |
C3 |
D3 |
4 |
A4 |
B4 |
C4 |
D4 |
5 |
A5 |
B5 |
C5 |
D5 |
6 |
A6 |
B6 |
C6 |
D6 |
7 |
A7 |
B7 |
C7 |
D7 |
4、使用axis=1相当于添加新列
df1
|
A |
B |
C |
D |
E |
0 |
A0 |
B0 |
C0 |
D0 |
E0 |
1 |
A1 |
B1 |
C1 |
D1 |
E1 |
2 |
A2 |
B2 |
C2 |
D2 |
E2 |
3 |
A3 |
B3 |
C3 |
D3 |
E3 |
A:添加一列Series
s1 = pd.Series(list(range(4)), name="F")
pd.concat([df1,s1], axis=1)
|
A |
B |
C |
D |
E |
F |
0 |
A0 |
B0 |
C0 |
D0 |
E0 |
0 |
1 |
A1 |
B1 |
C1 |
D1 |
E1 |
1 |
2 |
A2 |
B2 |
C2 |
D2 |
E2 |
2 |
3 |
A3 |
B3 |
C3 |
D3 |
E3 |
3 |
B:添加多列Series
s2 = df1.apply(lambda x:x["A"]+"_GG", axis=1)
s2
0 A0_GG
1 A1_GG
2 A2_GG
3 A3_GG
dtype: object
s2.name="G"
pd.concat([df1,s1,s2], axis=1)
|
A |
B |
C |
D |
E |
F |
G |
0 |
A0 |
B0 |
C0 |
D0 |
E0 |
0 |
A0_GG |
1 |
A1 |
B1 |
C1 |
D1 |
E1 |
1 |
A1_GG |
2 |
A2 |
B2 |
C2 |
D2 |
E2 |
2 |
A2_GG |
3 |
A3 |
B3 |
C3 |
D3 |
E3 |
3 |
A3_GG |
# 列表可以只有Series
pd.concat([s1,s2], axis=1)
|
F |
G |
0 |
0 |
A0_GG |
1 |
1 |
A1_GG |
2 |
2 |
A2_GG |
3 |
3 |
A3_GG |
# 列表是可以混合顺序的
pd.concat([s1,df1,s2], axis=1)
|
F |
A |
B |
C |
D |
E |
G |
0 |
0 |
A0 |
B0 |
C0 |
D0 |
E0 |
A0_GG |
1 |
1 |
A1 |
B1 |
C1 |
D1 |
E1 |
A1_GG |
2 |
2 |
A2 |
B2 |
C2 |
D2 |
E2 |
A2_GG |
3 |
3 |
A3 |
B3 |
C3 |
D3 |
E3 |
A3_GG |
二、使用DataFrame.append按行合并数据
df1 = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
df1
df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
df2
1、给1个dataframe添加另一个dataframe
df1.append(df2)
|
A |
B |
0 |
1 |
2 |
1 |
3 |
4 |
0 |
5 |
6 |
1 |
7 |
8 |
2、忽略原来的索引ignore_index=True
df1.append(df2, ignore_index=True)
|
A |
B |
0 |
1 |
2 |
1 |
3 |
4 |
2 |
5 |
6 |
3 |
7 |
8 |
3、可以一行一行的给DataFrame添加数据
# 一个空的df
df = pd.DataFrame(columns=['A'])
df
A:低性能版本
for i in range(5):
# 注意这里每次都在复制
df = df.append({'A': i}, ignore_index=True)
df
B:性能好的版本
# 第一个入参是一个列表,避免了多次复制
pd.concat(
[pd.DataFrame([i], columns=['A']) for i in range(5)],
ignore_index=True
)
相关推荐